Serveur d'exploration sur le patient édenté

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

In vivo injectable gels for tissue repair

Identifieur interne : 004738 ( Main/Exploration ); précédent : 004737; suivant : 004739

In vivo injectable gels for tissue repair

Auteurs : Jons Hilborn [Suède]

Source :

RBID : ISTEX:A474C15BD8900AF4E050439C679E61ECFBC9124C

Descripteurs français

English descriptors

Abstract

The desire to reduce healthcare costs while improving outcomes drives minimally invasive methods to replacing traditional surgical procedures. Various treatments that would previously have needed open‐type surgeries can be carried out using endoscopes, catheters, and needles. These advantages have become especially obvious for tissue engineering and regenerative medicine with in vivo gel injectable nanomaterials. In this review, the state of the art in this rapidly developing field is given. This is done by contrasting functional evaluation in vitro with in vivo followed by describing (1) synthetic materials, (2) the body's own polymers, (3) polymers in nature, (4) self‐assembled peptides, and (5) new innovations and combinations. With increased understanding of the relationship between material characteristics and the outcome in vivo more rational design criteria are emerging . WIREs Nanomed Nanobiotechnol 2011 3 589–606 DOI: 10.1002/wnan.91 For further resources related to this article, please visit the WIREs website.

Url:
DOI: 10.1002/wnan.91


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">In vivo injectable gels for tissue repair</title>
<author>
<name sortKey="Hilborn, Jons" sort="Hilborn, Jons" uniqKey="Hilborn J" first="Jons" last="Hilborn">Jons Hilborn</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:A474C15BD8900AF4E050439C679E61ECFBC9124C</idno>
<date when="2011" year="2011">2011</date>
<idno type="doi">10.1002/wnan.91</idno>
<idno type="url">https://api.istex.fr/document/A474C15BD8900AF4E050439C679E61ECFBC9124C/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">005236</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">005236</idno>
<idno type="wicri:Area/Istex/Curation">005236</idno>
<idno type="wicri:Area/Istex/Checkpoint">001683</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">001683</idno>
<idno type="wicri:doubleKey">1939-5116:2011:Hilborn J:in:vivo:injectable</idno>
<idno type="wicri:Area/Main/Merge">004767</idno>
<idno type="wicri:Area/Main/Curation">004738</idno>
<idno type="wicri:Area/Main/Exploration">004738</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">
<hi rend="italic">In vivo</hi>
injectable gels for tissue repair</title>
<author>
<name sortKey="Hilborn, Jons" sort="Hilborn, Jons" uniqKey="Hilborn J" first="Jons" last="Hilborn">Jons Hilborn</name>
<affiliation wicri:level="4">
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Materials Chemistry, Uppsala University, Uppsala 75121</wicri:regionArea>
<orgName type="university">Université d'Uppsala</orgName>
<placeName>
<settlement type="city">Uppsala</settlement>
<region nuts="1">Svealand</region>
<region nuts="1">East Middle Sweden</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">Suède</country>
</affiliation>
<affiliation wicri:level="4">
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Correspondence address: Department of Materials Chemistry, Uppsala University, Uppsala 75121</wicri:regionArea>
<orgName type="university">Université d'Uppsala</orgName>
<placeName>
<settlement type="city">Uppsala</settlement>
<region nuts="1">Svealand</region>
<region nuts="1">East Middle Sweden</region>
</placeName>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology</title>
<title level="j" type="alt">WILEY INTERDISCIPLINARY REVIEWS: NANOMEDICINE AND NANOBIOTECHNOLOGY</title>
<idno type="ISSN">1939-5116</idno>
<idno type="eISSN">1939-0041</idno>
<imprint>
<biblScope unit="vol">3</biblScope>
<biblScope unit="issue">6</biblScope>
<biblScope unit="page" from="589">589</biblScope>
<biblScope unit="page" to="606">606</biblScope>
<biblScope unit="page-count">23</biblScope>
<publisher>John Wiley & Sons, Inc.</publisher>
<pubPlace>Hoboken, USA</pubPlace>
<date type="published" when="2011-11">2011-11</date>
</imprint>
<idno type="ISSN">1939-5116</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1939-5116</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adhesion</term>
<term>Alginate</term>
<term>Amino acid sequence</term>
<term>Animal models</term>
<term>Annual meeting</term>
<term>Appl biomater</term>
<term>Augmentation rhinoplasty</term>
<term>Bioactive</term>
<term>Bioactive molecules</term>
<term>Biological activity</term>
<term>Biological outcome</term>
<term>Biological properties</term>
<term>Biomaterials</term>
<term>Biomed</term>
<term>Biomed mater</term>
<term>Block copolymers</term>
<term>Bone formation</term>
<term>Bone regeneration</term>
<term>Bone tissue engineering</term>
<term>Bovine chondrocytes</term>
<term>Brin</term>
<term>Brotic transformation</term>
<term>Burst release</term>
<term>Cartilage</term>
<term>Cartilage regeneration</term>
<term>Cell adhesion</term>
<term>Cell carrier</term>
<term>Cell survival</term>
<term>Cell viability</term>
<term>Cells cocultured</term>
<term>Chitosan</term>
<term>Chondrocytes</term>
<term>Chondroitin sulfate</term>
<term>Collagen</term>
<term>Compressive modulus</term>
<term>Compressive strength</term>
<term>Copolymer</term>
<term>Covalent crosslinking</term>
<term>Crosslinked</term>
<term>Crosslinked hyaluronan</term>
<term>Crosslinking</term>
<term>Degradation</term>
<term>Delivery system</term>
<term>Design freedom</term>
<term>Drug deliv</term>
<term>Drug delivery</term>
<term>Elastin</term>
<term>Encapsulated</term>
<term>Fibrin</term>
<term>Functional evaluation</term>
<term>Functional tissue</term>
<term>Gelatin</term>
<term>Gelation</term>
<term>Gelation rate</term>
<term>Healthcare costs</term>
<term>Heparin</term>
<term>Horseradish peroxidase</term>
<term>Hyaluronan</term>
<term>Hydrogel</term>
<term>Immune response</term>
<term>Implant</term>
<term>Important role</term>
<term>Injectable</term>
<term>Injectable biomaterial</term>
<term>Injectable materials</term>
<term>Injectable nanomaterials</term>
<term>Injectable scaffolds</term>
<term>International conference</term>
<term>Invasive</term>
<term>Invasive methods</term>
<term>Macromol biosci</term>
<term>Mater</term>
<term>Material characteristics</term>
<term>Matrix</term>
<term>Mechanical loading</term>
<term>Mechanical properties</term>
<term>Mechanical strength</term>
<term>Msc</term>
<term>Nano lett</term>
<term>Nanobiotechnology</term>
<term>Nanomedicine</term>
<term>Network structure</term>
<term>Nucleous</term>
<term>Nucleus pulposus cells</term>
<term>Peptide</term>
<term>Peptide scaffold</term>
<term>Physiological conditions</term>
<term>Polymer</term>
<term>Proteolytic degradation</term>
<term>Pulposa</term>
<term>Pure polymer</term>
<term>Receptor</term>
<term>Regeneration</term>
<term>Regenerative medicine</term>
<term>Release rate</term>
<term>Scaffold</term>
<term>Slower release</term>
<term>Soft matter</term>
<term>Soft tissue</term>
<term>Subcutaneous injection</term>
<term>Such procedures</term>
<term>Surg</term>
<term>Synthetic materials</term>
<term>Tissue engineering</term>
<term>Tissue engineering applications</term>
<term>Tissue engineering scaffolds</term>
<term>Tissue regeneration</term>
<term>Triblock copolymer</term>
<term>Various treatments</term>
<term>Vivo</term>
<term>Vivo injectable</term>
<term>Vivo studies</term>
<term>Wiley</term>
<term>Wires nanomedicine</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Adhesion</term>
<term>Alginate</term>
<term>Amino acid sequence</term>
<term>Animal models</term>
<term>Annual meeting</term>
<term>Appl biomater</term>
<term>Augmentation rhinoplasty</term>
<term>Bioactive</term>
<term>Bioactive molecules</term>
<term>Biological activity</term>
<term>Biological outcome</term>
<term>Biological properties</term>
<term>Biomaterials</term>
<term>Biomed</term>
<term>Biomed mater</term>
<term>Block copolymers</term>
<term>Bone formation</term>
<term>Bone regeneration</term>
<term>Bone tissue engineering</term>
<term>Bovine chondrocytes</term>
<term>Brin</term>
<term>Brotic transformation</term>
<term>Burst release</term>
<term>Cartilage</term>
<term>Cartilage regeneration</term>
<term>Cell adhesion</term>
<term>Cell carrier</term>
<term>Cell survival</term>
<term>Cell viability</term>
<term>Cells cocultured</term>
<term>Chitosan</term>
<term>Chondrocytes</term>
<term>Chondroitin sulfate</term>
<term>Collagen</term>
<term>Compressive modulus</term>
<term>Compressive strength</term>
<term>Copolymer</term>
<term>Covalent crosslinking</term>
<term>Crosslinked</term>
<term>Crosslinked hyaluronan</term>
<term>Crosslinking</term>
<term>Degradation</term>
<term>Delivery system</term>
<term>Design freedom</term>
<term>Drug deliv</term>
<term>Drug delivery</term>
<term>Elastin</term>
<term>Encapsulated</term>
<term>Fibrin</term>
<term>Functional evaluation</term>
<term>Functional tissue</term>
<term>Gelatin</term>
<term>Gelation</term>
<term>Gelation rate</term>
<term>Healthcare costs</term>
<term>Heparin</term>
<term>Horseradish peroxidase</term>
<term>Hyaluronan</term>
<term>Hydrogel</term>
<term>Immune response</term>
<term>Implant</term>
<term>Important role</term>
<term>Injectable</term>
<term>Injectable biomaterial</term>
<term>Injectable materials</term>
<term>Injectable nanomaterials</term>
<term>Injectable scaffolds</term>
<term>International conference</term>
<term>Invasive</term>
<term>Invasive methods</term>
<term>Macromol biosci</term>
<term>Mater</term>
<term>Material characteristics</term>
<term>Matrix</term>
<term>Mechanical loading</term>
<term>Mechanical properties</term>
<term>Mechanical strength</term>
<term>Msc</term>
<term>Nano lett</term>
<term>Nanobiotechnology</term>
<term>Nanomedicine</term>
<term>Network structure</term>
<term>Nucleous</term>
<term>Nucleus pulposus cells</term>
<term>Peptide</term>
<term>Peptide scaffold</term>
<term>Physiological conditions</term>
<term>Polymer</term>
<term>Proteolytic degradation</term>
<term>Pulposa</term>
<term>Pure polymer</term>
<term>Receptor</term>
<term>Regeneration</term>
<term>Regenerative medicine</term>
<term>Release rate</term>
<term>Scaffold</term>
<term>Slower release</term>
<term>Soft matter</term>
<term>Soft tissue</term>
<term>Subcutaneous injection</term>
<term>Such procedures</term>
<term>Surg</term>
<term>Synthetic materials</term>
<term>Tissue engineering</term>
<term>Tissue engineering applications</term>
<term>Tissue engineering scaffolds</term>
<term>Tissue regeneration</term>
<term>Triblock copolymer</term>
<term>Various treatments</term>
<term>Vivo</term>
<term>Vivo injectable</term>
<term>Vivo studies</term>
<term>Wiley</term>
<term>Wires nanomedicine</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Biomatériau</term>
<term>Conférence internationale</term>
<term>Polymère</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The desire to reduce healthcare costs while improving outcomes drives minimally invasive methods to replacing traditional surgical procedures. Various treatments that would previously have needed open‐type surgeries can be carried out using endoscopes, catheters, and needles. These advantages have become especially obvious for tissue engineering and regenerative medicine with in vivo gel injectable nanomaterials. In this review, the state of the art in this rapidly developing field is given. This is done by contrasting functional evaluation in vitro with in vivo followed by describing (1) synthetic materials, (2) the body's own polymers, (3) polymers in nature, (4) self‐assembled peptides, and (5) new innovations and combinations. With increased understanding of the relationship between material characteristics and the outcome in vivo more rational design criteria are emerging . WIREs Nanomed Nanobiotechnol 2011 3 589–606 DOI: 10.1002/wnan.91 For further resources related to this article, please visit the WIREs website.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Suède</li>
</country>
<region>
<li>East Middle Sweden</li>
<li>Svealand</li>
</region>
<settlement>
<li>Uppsala</li>
</settlement>
<orgName>
<li>Université d'Uppsala</li>
</orgName>
</list>
<tree>
<country name="Suède">
<region name="Svealand">
<name sortKey="Hilborn, Jons" sort="Hilborn, Jons" uniqKey="Hilborn J" first="Jons" last="Hilborn">Jons Hilborn</name>
</region>
<name sortKey="Hilborn, Jons" sort="Hilborn, Jons" uniqKey="Hilborn J" first="Jons" last="Hilborn">Jons Hilborn</name>
<name sortKey="Hilborn, Jons" sort="Hilborn, Jons" uniqKey="Hilborn J" first="Jons" last="Hilborn">Jons Hilborn</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/EdenteV2/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004738 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 004738 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    EdenteV2
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:A474C15BD8900AF4E050439C679E61ECFBC9124C
   |texte=   In vivo injectable gels for tissue repair
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Thu Nov 30 15:26:48 2017. Site generation: Tue Mar 8 16:36:20 2022